MiniMax Agent – Agent Communication Protocol Integration
Overview
Mini Agent is a minimal yet professional agent demo project built by MiniMax AI. I contributed the ACP (Agent Communication Protocol) integration, enabling seamless Zed editor integration for AI agent workflows.
This project showcases production-grade agent patterns with MiniMax's M2.1 model, supporting interleaved thinking and Anthropic-compatible API for maximum interoperability.
Repository: github.com/MiniMax-AI/Mini-Agent
The Problem
AI agents need to integrate with development environments, but:
- Fragmented Tooling: Each editor requires different integration approaches
- Protocol Incompatibility: No standard communication protocol between agents and IDE
- Complex Setup: Production agent frameworks require extensive configuration
Solution
ACP Integration
The Agent Communication Protocol (ACP) provides a standardized interface for agent-editor communication.
┌─────────────────────────────────────────────────────────┐
│ Zed Editor │
│ Agent Panel with mini-agent selected │
└─────────────────────────────────────────────────────────┘
│
│ ACP Protocol
▼
┌─────────────────────────────────────────────────────────┐
│ Mini Agent ACP Server │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ ACP Handler │ │ M2.1 Model │ │ Tool Executor│ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ MiniMax API (MiniMax-M2.1) │
│ https://api.minimax.io / api.minimaxi.com │
└─────────────────────────────────────────────────────────┘
Zed Editor Configuration
Add to Zed settings.json:
{
"agent_server": {
"mini-agent": {
"command": "/path/to/mini-agent-acp"
}
}
}
The command path varies by installation method:
- uv tool install: Use
which mini-agent-acp - Development mode:
./mini_agent/acp/server.py
Core Agent Features
| Feature | Description |
|---|---|
| Full Agent Loop | Complete execution pipeline with file system and shell tools |
| Persistent Memory | Session Note Tool retains context across sessions |
| Context Management | Auto-summarization handles unlimited conversation length |
| Claude Skills | 15 professional skills for documents, design, testing |
| MCP Tools | Native MCP support for knowledge graphs, web search |
| Logging | Detailed logs for debugging and monitoring |
Model Capabilities
- MiniMax-M2.1: Latest model with exceptional multilingual and coding capabilities
- Interleaved Thinking: Full chain-of-thought visibility for debugging
- Anthropic API Compatible: Drop-in replacement for existing Claude workflows
Technical Implementation
ACP Server
# mini_agent/acp/server.py
class ACPServer:
async def handle_message(self, message: ACPMessage) -> ACPResponse:
# Route to appropriate handler based on message type
if message.type == "task_request":
return await self.execute_task(message.payload)
elif message.type == "tool_call":
return await self.execute_tool(message.tool_name, message.args)
Zed Integration Flow
- Agent Selection: User selects "mini-agent" from Zed agent dropdown
- Connection: Zed connects to ACP server via stdin/stdout
- Task Submission: User submits task via Zed panel
- Model Execution: Task sent to MiniMax-M2.1 with full context
- Tool Execution: Agent uses file system, shell, and MCP tools
- Response Delivery: Results returned to Zed panel
Dependencies
- Python 3.11+ for async support
- uv for package management
- MCP for tool integration
- Claude Skills (optional submodule)
Challenges & Solutions
Protocol Compatibility
Challenge: ACP specification evolving; need to support both current and upcoming versions.
Solution: Implemented version negotiation in handshake phase, with fallback to legacy mode for older Zed versions.
Performance Under Load
Challenge: Long-running agent tasks could timeout Zed connection.
Solution: Implemented heartbeat mechanism to keep connection alive, with streaming response for real-time feedback.
Cross-Platform Deployment
Challenge: Zed and MiniMax API availability differ by region.
Solution: Dual API endpoint support:
- Global:
https://api.minimax.io - China:
https://api.minimaxi.com
Results
Community Impact
- 1,000+ GitHub stars showcasing interest in production agent frameworks
- 144 forks with active community experimentation
- 9 contributors across global community
Use Cases Enabled
- Code Generation: Generate files, refactor codebases, write tests
- Documentation: Create technical docs, README files, API references
- Web Research: MCP-powered search and summarization
- CI/CD Integration: Claude Skills for build, test, deploy workflows
Supported Platforms
| Platform | Installation |
|---|---|
| Quick Start | uv tool install git+https://github.com/MiniMax-AI/Mini-Agent.git |
| Development | Clone repo, uv sync, uv run python -m mini_agent.cli |
| ACP Server | ./mini_agent/acp/server.py or installed command |
Installation
Quick Start Mode
# Install from GitHub
uv tool install git+https://github.com/MiniMax-AI/Mini-Agent.git
# Setup configuration
curl -fsSL https://raw.githubusercontent.com/MiniMax-AI/Mini-Agent/main/scripts/setup-config.sh | bash
# Configure API key
nano ~/.mini-agent/config/config.yaml
Development Mode
git clone https://github.com/MiniMax-AI/Mini-Agent.git
cd Mini-Agent
uv sync
uv run python -m mini_agent.cli
Code Quality
- Comprehensive Testing: Unit tests, functional tests, integration tests via pytest
- Documentation: Development Guide, Production Guide, README in EN/CN
- MIT License: Permissive open-source license
- Active Maintenance: Regular commits, issue response, feature requests handling
Lessons Learned
Protocol Design Matters: ACP's standardized approach enables interoperability that benefits entire ecosystem.
Anthropic Compatibility = Adoption: Making API compatible with Anthropic SDK reduced adoption friction significantly.
Minimal != Simple: The "minimal yet professional" philosophy produced a project that's easy to understand but production-ready.
Community-Driven Evolution: Fork count and contributor diversity indicate healthy project ecosystem.
Future Work
- More MCP Tools: Expand tool ecosystem (database, APIs, services)
- Multi-Agent Coordination: Extend Orchestra patterns to MiniAgent
- Enterprise Features: Authentication, rate limiting, audit logging
- Self-Hosting: Simplified deployment for private infrastructure
This contribution demonstrates 0xSero's commitment to interoperability infrastructure—building bridges between AI capabilities and developer tools through standardized protocols integration.
Explore the code: github.com/MiniMax-AI/Mini-Agent
More Case Studies
Open Queue – Message Queue Plugin for OpenCode
A TypeScript plugin that queues messages while OpenCode is thinking, preventing context confusion from interrupted responses.
AI Coding Assistant Training Data Extraction Toolkit
A Python toolkit for extracting conversation histories, code contexts, and metadata from popular AI coding assistants for ML training and analysis.